
Selected Solutions for Chapter 14:
Augmenting Data Structures

Solution to Exercise 14.1-7

Let AŒ1 : : n� be the array ofn distinct numbers.

One way to count the inversions is to add up, for each element,the number of larger
elements that precede it in the array:

# of inversionsD
nX

j D1

jIn�.j /j ;

whereIn�.j / D fi W i < j andAŒi� > AŒj �g.

Note thatjIn�.j /j is related toAŒj �’s rank in the subarrayAŒ1 : : j � because the
elements inIn�.j / are the reason thatAŒj � is not positioned according to its rank.
Let r.j / be the rank ofAŒj � in AŒ1 : : j �. Thenj D r.j / C jIn�.j /j, so we can
compute

jIn�.j /j D j � r.j /

by insertingAŒ1�; : : : ; AŒn� into an order-statistic tree and using OS-RANK to find
the rank of eachAŒj � in the tree immediately after it is inserted into the tree. (This
OS-RANK value isr.j /.)

Insertion and OS-RANK each takeO.lg n/ time, and so the total time forn ele-
ments isO.n lg n/.

Solution to Exercise 14.2-2

Yes, we can maintain black-heights as attributes in the nodes of a red-black tree
without affecting the asymptotic performance of the red-black tree operations. We
appeal to Theorem 14.1, because the black-height of a node can be computed from
the information at the node and its two children. Actually, the black-height can
be computed from just one child’s information: the black-height of a node is the
black-height of a red child, or the black height of a black child plus one. The
second child does not need to be checked because of property 5of red-black trees.

Within the RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures are color
changes, each of which potentially causeO.lg n/ black-height changes. Let us
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show that the color changes of the fixup procedures cause onlylocal black-height
changes and thus are constant-time operations. Assume thatthe black-height of
each nodex is kept in the attributex:bh.

For RB-INSERT-FIXUP, there are 3 cases to examine.

Case 1: ´’s uncle is red.
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� Before color changes, suppose that all subtrees˛; ˇ; 
; ı; � have the same
black-heightk with a black root, so that nodesA, B , C , andD have black-
heights ofk C 1.

� After color changes, the only node whose black-height changed is nodeC .
To fix that, add́ :p:p:bh D ´:p:p:bh C 1 after line 7 in RB-INSERT-FIXUP.

� Since the number of black nodes between´:p:p and´ remains the same,
nodes abové:p:p are not affected by the color change.

Case 2: ´’s uncley is black, and́ is a right child.

Case 3: ´0’s uncley is black, and́ is a left child.
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� With subtrees̨ ; ˇ; 
; ı; � of black-heightk, we see that even with color
changes and rotations, the black-heights of nodesA, B, andC remain the
same (k C 1).

Thus, RB-INSERT-FIXUP maintains its originalO.lg n/ time.

For RB-DELETE-FIXUP, there are 4 cases to examine.
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Case 1: x’s siblingw is red.
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Case 1

� Even though case 1 changes colors of nodes and does a rotation, black-
heights are not changed.

� Case 1 changes the structure of the tree, but waits for cases 2, 3, and 4 to
deal with the “extra black” onx.

Case 2: x’s siblingw is black, and both ofw’s children are black.
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Case 2

� w is colored red, andx’s “extra” black is moved up tox:p.
� Now we can addx:p:bh D x:bh after line 10 in RB-DELETE-FIXUP.
� This is a constant-time update. Then, keep looping to deal with the extra

black onx:p.

Case 3: x’s siblingw is black,w’s left child is red, andw’s right child is black.
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� Regardless of the color changes and rotation of this case, the black-heights
don’t change.

� Case 3 just sets up the structure of the tree, so it can fall correctly into case 4.

Case 4: x’s siblingw is black, andw’s right child is red.
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� NodesA, C , andE keep the same subtrees, so their black-heights don’t
change.

� Add these two constant-time assignments in RB-DELETE-FIXUP after
line 20:

x:p:bh D x:bh C 1

x:p:p:bh D x:p:bh C 1

� The extra black is taken care of. Loop terminates.

Thus, RB-DELETE-FIXUP maintains its originalO.lg n/ time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes
in red-black trees without affecting the asymptotic performance of red-black tree
operations.

For the second part of the question, no, we cannot maintain node depths without
affecting the asymptotic performance of red-black tree operations. The depth of a
node depends on the depth of its parent. When the depth of a node changes, the
depths of all nodes below it in the tree must be updated. Updating the root node
causesn � 1 other nodes to be updated, which would mean that operations on the
tree that change node depths might not run inO.n lg n/ time.

Solution to Exercise 14.3-7

General idea: Move a sweep line from left to right, while maintaining the set of
rectangles currently intersected by the line in an intervaltree. The interval tree
will organize all rectangles whosex interval includes the current position of the
sweep line, and it will be based on they intervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by theirx-coordinates. (Actually, each rectangle must ap-
pear twice in the sorted list—once for its leftx-coordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highestx-coordinate).

� When anx-coordinate of a left edge is found, check whether the rectangle’s
y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on itsy-coordinate interval) into the tree.

� When anx-coordinate of a right edge is found, delete the rectangle from the
interval tree.

The interval tree always contains the set of “open” rectangles intersected by the
sweep line. If an overlap is ever found in the interval tree, there are overlapping
rectangles.

Time: O.n lg n/

� O.n lg n/ to sort the rectangles (we can use merge sort or heap sort).
� O.n lg n/ for interval-tree operations (insert, delete, and check for overlap).


