Selected Solutionsfor Chapter 14:
Augmenting Data Structures

Solution to Exercise 14.1-7

Let A[1..n] be the array of distinct numbers.

One way to count the inversions is to add up, for each elerttenhumber of larger
elements that precede it in the array:

of inversions= Y " [Inv(;)] .
j=1
wherelnv(j) = {i : i < j andA[i] > A[j]}.
Note that|Inv(j)| is related toA[j]'s rank in the subarray|[l1.. j] because the
elements innv(j) are the reason that[;] is not positioned according to its rank.

Letr(j) be the rank ofd[j] in A[l..j]. Thenj = r(j) + [Inv(j)|, SO we can
compute

()l =7 —=r()

by insertingA[1], ..., A[n] into an order-statistic tree and using O 3w to find
the rank of eaci[j] in the tree immediately after it is inserted into the treeni§T
OS-RaNK value isr(j).)

Insertion and OS-BRNK each takeO(lgn) time, and so the total time for ele-
ments isO(n lgn).

Solution to Exercise 14.2-2

Yes, we can maintain black-heights as attributes in the sofle red-black tree
without affecting the asymptotic performance of the reakekltree operations. We
appeal to Theorem 14.1, because the black-height of a nodesceomputed from
the information at the node and its two children. Actualhe black-height can
be computed from just one child’s information: the blackghe of a node is the
black-height of a red child, or the black height of a blackldhilus one. The
second child does not need to be checked because of propafrte®-black trees.

Within the RB-INSERFFIXuP and RB-DELETE-FIXuP procedures are color
changes, each of which potentially cau@€élg n) black-height changes. Let us

14-2 Selected Solutions for Chapter 14: Augmenting Data Structures

show that the color changes of the fixup procedures causdaodl/black-height
changes and thus are constant-time operations. Assumé¢héhatack-height of
each noder is kept in the attributer. bh.

For RB-INSERT-FIXUP, there are 3 cases to examine.

Case l: z'suncleis red.

» Before color changes, suppose that all subttees y, §, ¢ have the same
black-heightc with a black root, so that nodes, B, C, andD have black-
heights ofk + 1.

» After color changes, the only node whose black-height cedng nodeC.
To fix that, addz. p.p.bh = z.p.p.bh+ 1 after line 7 in RB-NSERFFIXUP.

* Since the number of black nodes betweep.p and z remains the same,
nodes above.p.p are not affected by the color change.

Case2: z's uncley is black, and; is a right child.
Case 3. zs uncley is black, and; is a left child.

Case 2

* With subtreesx, 8, y, 4§, ¢ of black-heightk, we see that even with color
changes and rotations, the black-heights of notle8, andC remain the
same k + 1).

Thus, RB-NSERTFIXUP maintains its originaD (Ig n) time.
For RB-DELETE-FIXUP, there are 4 cases to examine.

Sdlected Solutions for Chapter 14: Augmenting Data Structures 14-3

Casel: x’ssiblingw is red.

* Even though case 1 changes colors of nodes and does a rptalhok-
heights are not changed.

* Case 1 changes the structure of the tree, but waits for casksald 4 to
deal with the “extra black” orx.

Case 2: x’s sibling w is black, and both ofv’s children are black.

* w is colored red, and’s “extra” black is moved up ta.p.

* Now we can add:. p.bh = x.bh after line 10 in RB-ELETE-FIxup.

* This is a constant-time update. Then, keep looping to detl thie extra
black onx.p.

Case 3: x’s sibling w is black,w’s left child is red, andw’s right child is black.

* Regardless of the color changes and rotation of this casd)lfitk-heights
don’t change.
» Case 3just sets up the structure of the tree, so it can fakctby into case 4.

Case4: x’s siblingw is black, andw’s right child is red.

newx = root[T]

14-4 Selected Solutions for Chapter 14: Augmenting Data Structures

* NodesA, C, and E keep the same subtrees, so their black-heights don't
change.

* Add these two constant-time assignments in RBEBTE-FIXupP after
line 20:

x.p.bh = x.bh+1
x.p.p.bh = x.p.bh+ 1

* The extra black is taken care of. Loop terminates.

Thus, RB-CELETE-FIXUP maintains its originaD(Ig n) time.

Therefore, we conclude that black-heights of nodes can lietamaed as attributes
in red-black trees without affecting the asymptotic pearfance of red-black tree
operations.

For the second part of the question, no, we cannot maintaie depths without
affecting the asymptotic performance of red-black treeraji@ens. The depth of a
node depends on the depth of its parent. When the depth of@ct@hges, the
depths of all nodes below it in the tree must be updated. lpgldte root node
causes: — 1 other nodes to be updated, which would mean that operatiotiseo
tree that change node depths might not ru@im Ig n) time.

Solution to Exercise 14.3-7

General idea: Move a sweep line from left to right, while ntaining the set of
rectangles currently intersected by the line in an intetngg. The interval tree
will organize all rectangles whose interval includes the current position of the
sweep line, and it will be based on theintervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlappirgaegles.

Details:
1. Sort the rectangles by theircoordinates. (Actually, each rectangle must ap-

pear twice in the sorted list—once for its leficoordinate and once for its right

x-coordinate.)

2. Scan the sorted list (from lowest to highestoordinate).

* When anx-coordinate of a left edge is found, check whether the regbéém
y-coordinate interval overlaps an interval in the tree, anseit the rectangle
(keyed on itsy-coordinate interval) into the tree.

* When anx-coordinate of a right edge is found, delete the rectangia fihe
interval tree.

The interval tree always contains the set of “open” rectesigitersected by the
sweep line. If an overlap is ever found in the interval tréeré are overlapping
rectangles.

Time: O(nlgn)
* O(nlgn) to sort the rectangles (we can use merge sort or heap sort).
* O(nlgn) for interval-tree operations (insert, delete, and checkierlap).

